Michelle Ufford, et al, explain why and how they use Jupyter Notebooks at Netflix:
Notebooks were first introduced at Netflix to support data science workflows. As their adoption grew among data scientists, we saw an opportunity to scale our tooling efforts. We realized we could leverage the versatility and architecture of Jupyter notebooks and extend it for general data access. In Q3 2017 we began this work in earnest, elevating notebooks from a niche tool to a first-class citizen of the data platform.
From our users’ perspective, notebooks offer a convenient interface for iteratively running code, exploring output, and visualizing data — all from a single cloud-based development environment. We also maintain a Python library that consolidates access to platform APIs. This means users have programmatic access to virtually the entire platform from within a notebook.Because of this combination of versatility, power, and ease of use, we’ve seen rapid organic adoption for all user types across the entire Data Platform.
Today, notebooks are the most popular tool for working with data at Netflix.
Good article. I love notebooks for two reasons: pedagogical purposes (it’s easier to show a demo in a notebook) and forcing you to work linearly.