Bayesian Neural Networks

Yoel Zeldes thinks about neural networks from a different perspective:

The term logP(w), which represents our prior, acts as a regularization term. Choosing a Gaussian distribution with mean 0 as the prior, you’ll get the mathematical equivalence of L2 regularization.

Now that we start thinking about neural networks as probabilistic creatures, we can let the fun begin. For start, who says we have to output one set of weights at the end of the training process? What if instead of learning the model’s weights, we learn a distribution over the weights? This will allow us to estimate uncertainty over the weights. So how do we do that?

It’s an interesting approach to the problem.

Related Posts

Building A Neural Network In R With Keras

Pablo Casas walks us through Keras on R: One of the key points in Deep Learning is to understand the dimensions of the vector, matrices and/or arrays that the model needs. I found that these are the types supported by Keras. In Python’s words, it is the shape of the array. To do a binary […]

Read More

Combining Apache Kafka With TensorFlow

Kai Waehner has an example of an application which uses Apache Kafka to stream car sensor data to TensorFlow on Google ML Engine: A great benefit of Confluent MQTT Proxy is simplicity for realizing IoT scenarios without the need for a MQTT Broker. You can forward messages directly from the MQTT devices to Kafka via the MQTT […]

Read More


August 2018
« Jul Sep »