Exploratory Time Series Analysis

The authors at Knoyd have a post on exploratory data analysis of a time series data set:

From the plot above we can clearly see that time-series has strong seasonal and trend components. To estimate the trend component we can use a function from the pandas library called rolling_mean and plot the results. If we want to make the plot more fancy and reusable for another time-series it is a good idea to make a function. We can call this function plot_moving_average.

The second part of the series promises to use Box-Jenkins to forecast future values.

Related Posts

Bias Correction In Standard Deviation Estimates

John Mount explains how to perform bias correction and explains why it happens so rarely in practice: The bias in question is falling off at a rate of 1/n (where n is our sample size). So the bias issue loses what little gravity it ever may have ever had when working with big data. Most sources of noise will […]

Read More

Explaining Neural Networks With H2O

Shirin Glander explains some of the concepts behind neural networks using H2O as a guide: Before, when describing the simple perceptron, I said that a result is calculated in a neuron, e.g. by summing up all the incoming data multiplied by weights. However, this has one big disadvantage: such an approach would only enable our neural net […]

Read More

Categories

July 2018
MTWTFSS
« Jun Aug »
 1
2345678
9101112131415
16171819202122
23242526272829
3031