Exploratory Time Series Analysis

The authors at Knoyd have a post on exploratory data analysis of a time series data set:

From the plot above we can clearly see that time-series has strong seasonal and trend components. To estimate the trend component we can use a function from the pandas library called rolling_mean and plot the results. If we want to make the plot more fancy and reusable for another time-series it is a good idea to make a function. We can call this function plot_moving_average.

The second part of the series promises to use Box-Jenkins to forecast future values.

Related Posts

A Primer on Survey Analysis

Federico Pascual has a long primer on survey analysis: When it comes to customer feedback, you’ll find that not all the information you get is useful to your company. This feedback can be categorized into non-insightful and insightful data. The former refers to data you had already spotted as problematic, while insightful information either helps […]

Read More

Linear Regression in Power BI

Joseph Yeates shows how to implement linear regression in Power BI: The goal of a simple linear model is to fit a line onto this plot to summarize the shape of the data using the equation above. The “a” value is the slope of the fitted line (rise over run) and the “b” value is […]

Read More


July 2018
« Jun Aug »