Explaining Text Classification Models With LIME

Shirin Glander shows us how to use LIME to explain which words help us classify whether a user liked a particular item:

Okay, not a perfect score but good enough for me – right now, I’m more interested in the explanations of the model’s predictions. For this, we need to run the lime() function and give it

  • the text input that was used to construct the model
  • the trained model
  • the preprocessing function
explainer <- lime(clothing_reviews_train$text, xgb_model, preprocess = get_matrix)

With this, we could right away call the interactive explainer Shiny app, where we can type any text we want into the field on the left and see the explanation on the right: words that are underlined green support the classification, red words contradict them.

I hadn’t used LIME for this before, and it looks very interesting.  H/T R-Bloggers

Related Posts

Kafka And The Differing Aims Of Data Professionals

Kai Waehner argues that there is an impedence mismatch between data engineers, data scientists, and ML production engineers: Data scientists love Python, period. Therefore, the majority of machine learning/deep learning frameworks focus on Python APIs. Both the stablest and most cutting edge APIs, as well as the majority of examples and tutorials use Python APIs. […]

Read More

Solving The Monty Hall Problem With R

Miroslav Rajter builds a Monty Hall problem simulator using R: The original and most simple scenario of the Monty Hall problem is this: You are in a prize contest and in front of you there are three doors (A, B and C). Behind one of the doors is a prize (Car), while behind others is […]

Read More

Categories

July 2018
MTWTFSS
« Jun Aug »
 1
2345678
9101112131415
16171819202122
23242526272829
3031