Explaining Text Classification Models With LIME

Shirin Glander shows us how to use LIME to explain which words help us classify whether a user liked a particular item:

Okay, not a perfect score but good enough for me – right now, I’m more interested in the explanations of the model’s predictions. For this, we need to run the lime() function and give it

  • the text input that was used to construct the model
  • the trained model
  • the preprocessing function
explainer <- lime(clothing_reviews_train$text, xgb_model, preprocess = get_matrix)

With this, we could right away call the interactive explainer Shiny app, where we can type any text we want into the field on the left and see the explanation on the right: words that are underlined green support the classification, red words contradict them.

I hadn’t used LIME for this before, and it looks very interesting.  H/T R-Bloggers

Related Posts

The Lesser-Known Apply Functions In R

Andrew Treadway covers a few of the lesser-known apply functions in R: rapply Let’s start with rapply. This function has a couple of different purposes. One is to recursively apply a function to a list. We’ll get to that in a moment. The other use of rapply is to a apply a function to only those elements in […]

Read More

Bias Correction In Standard Deviation Estimates

John Mount explains how to perform bias correction and explains why it happens so rarely in practice: The bias in question is falling off at a rate of 1/n (where n is our sample size). So the bias issue loses what little gravity it ever may have ever had when working with big data. Most sources of noise will […]

Read More

Categories

July 2018
MTWTFSS
« Jun Aug »
 1
2345678
9101112131415
16171819202122
23242526272829
3031