Interacting With SQL Server From Pandas

Tomaz Kastrun shows how to use pyodbc to interact with a SQL Server database from Pandas:

In the SQL Server Management Studio (SSMS), the ease of using external procedure sp_execute_external_script has been (and still will be) discussed many times. But the reason for this short blog post is the fact that, changing Python environments using Conda package/module management within Microsoft SQL Server (Services), is literally impossible. Scenarios, where you want to build  a larger set of modules (packages) but are impossible to be compatible with your SQL Server or Conda, then you would need to set up a new virtual environment and start using Python from there.

Communicating with database to load the data into different python environment should not be a problem. Python Pandas module is an easy way to store dataset in a table-like format, called dataframe. Pandas is very powerful python package for handling data structures and doing data analysis.

Click through for examples of reading and writing data.

Related Posts

Classifying Texts With Naive Bayes

I continue my series on Naive Bayes with another hand-calculation post: Step two is, on the surface, pretty tough: how do we figure out if a set of words is a business phrase or a baseball phrase? We could try to think up a set of features. For example, how long is the phrase? How many unique […]

Read More

Where Machine Learning And Econometrics Collide

Dave Giles shares some thoughts on how machine learning and econometrics relate: What is Machine Learning (ML), and how does it differ from Statistics (and hence, implicitly, from Econometrics)? Those are big questions, but I think that they’re ones that econometricians should be thinking about. And if I were starting out in Econometrics today, I’d […]

Read More


July 2018
« Jun Aug »