Interacting With SQL Server From Pandas

Tomaz Kastrun shows how to use pyodbc to interact with a SQL Server database from Pandas:

In the SQL Server Management Studio (SSMS), the ease of using external procedure sp_execute_external_script has been (and still will be) discussed many times. But the reason for this short blog post is the fact that, changing Python environments using Conda package/module management within Microsoft SQL Server (Services), is literally impossible. Scenarios, where you want to build  a larger set of modules (packages) but are impossible to be compatible with your SQL Server or Conda, then you would need to set up a new virtual environment and start using Python from there.

Communicating with database to load the data into different python environment should not be a problem. Python Pandas module is an easy way to store dataset in a table-like format, called dataframe. Pandas is very powerful python package for handling data structures and doing data analysis.

Click through for examples of reading and writing data.

Related Posts

Dealing With Multicollinearity With R

Chaitanya Sagar explains the concept of multicollinearity in linear regressions and how we can mitigate this issue in R: Perfect multicollinearity occurs when one independent variable is an exact linear combination of other variables. For example, you already have X and Y as independent variables and you add another variable, Z = a*X + b*Y, […]

Read More

Performing Linear Regression With Power BI

Jason Cantrell shows how to create a simple linear regression in Power BI: Linear Regression is a very useful statistical tool that helps us understand the relationship between variables and the effects they have on each other. It can be used across many industries in a variety of ways – from spurring value to gaining […]

Read More

Categories

July 2018
MTWTFSS
« Jun Aug »
 1
2345678
9101112131415
16171819202122
23242526272829
3031