When Image Classifiers Look At Unknown Objects

Pete Warden explains that image classifiers aren’t magic:

As people, we’re used to being able to classify anything we see in the world around us, and we naturally expect machines to have the same ability. Most models are only trained to recognize a very limited set of objects though, such as the 1,000 categories of the original ImageNet competition. Crucially, the training process makes the assumption that every example the model sees is one of those objects, and the prediction must be within that set. There’s no option for the model to say “I don’t know”, and there’s no training data to help it learn that response. This is a simplification that makes sense within a research setting, but causes problems when we try to use the resulting models in the real world.

Back when I was at Jetpac, we had a lot of trouble convincing people that the ground-breaking AlexNet model was a big leap forward because every time we handed over a demo phone running the network, they would point it at their faces and it would predict something like “Oxygen mask” or “Seat belt”. This was because the ImageNet competition categories didn’t include any labels for people, but most of the photos with mask and seatbelt labels included faces along with the objects. Another embarrassing mistake came when they would point it at a plate and it would predict “Toilet seat”! This was because there were no plates in the original categories, and the closest white circular object in appearance was a toilet.

Read the whole thing.

Related Posts

Testing Spatial Equilibrium Concepts With tidycensus

Ignacio Sarmiento Barbieri walks us through the concept of spatial equilibrium and tests using data from the tidycensus package: Let’s take the model to the data and reproduce figures 2.1. and 2.2 of “Cities, Agglomeration, and Spatial Equilibrium”. The focus are two cities, Chicago and Boston. These cities are chosen because both differ in how easy […]

Read More

Interacting With SQL Server From Pandas

Tomaz Kastrun shows how to use pyodbc to interact with a SQL Server database from Pandas: In the SQL Server Management Studio (SSMS), the ease of using external procedure sp_execute_external_script has been (and still will be) discussed many times. But the reason for this short blog post is the fact that, changing Python environments using Conda package/module management within Microsoft […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Categories

July 2018
MTWTFSS
« Jun  
 1
2345678
9101112131415
16171819202122
23242526272829
3031