Parallelism Strategies For Grouping Operations

Itzik Ben-Gan continues his series on grouping data in SQL Server by looking at how these operations can go parallel:

Besides needing to choose between various grouping and aggregation strategies (preordered Stream Aggregate, Sort + Stream Aggregate, Hash Aggregate), SQL Server also needs to choose whether to go with a serial or a parallel plan. In fact, it can choose between multiple different parallelism strategies. SQL Server uses costing logic that results in optimization thresholds that under different conditions make one strategy preferred to the others. We’ve already discussed in depth the costing logic that SQL Server uses in serial plans in the previous parts of the series. In this section I’ll introduce a number of parallelism strategies that SQL Server can use for handling grouping and aggregation. Initially, I won’t get into the details of the costing logic, rather just describe the available options. Later in the article I’ll explain how the costing formulas work, and an important factor in those formulas called DOP for costing.

As you will later learn, SQL Server takes into account the number of logical CPUs in the machine in its costing formulas for parallel plans. In my examples, unless I say otherwise, I assume the target system has 8 logical CPUs. If you want to try out the examples that I’ll provide, in order to get the same plans and costing values like I do, you need to run the code on a machine with 8 logical CPUs as well. If you’re machine happens to have a different number of CPUs, you can emulate a machine with 8 CPUs—for costing purposes—like so:

DBCC OPTIMIZER_WHATIF(CPUs, 8);

Even though this tool is not officially documented and supported, it’s quite convenient for research and learning purposes.

This is a fairly long article, but a great one.

Related Posts

APPROX_COUNT_DISTINCT

Niko Neugebauer is happy with a new function in SQL Server 2019: A rather interesting result takes place if we scale our database to 100GB TPCH and run the very same queries – the total elapsed time jumps to 50% difference (from 30%), the CPU execution time difference is kept at 50%, but the memory […]

Read More

Simulating LAG And LEAD Prior To SQL Server 2012

Izik Ben-Gan highlights a reader submission from his last post: Last month I covered a Special Islands challenge. The task was to identify periods of activity for each service ID, tolerating a gap of up to an input number of seconds (@allowedgap). The caveat was that the solution had to be pre-2012 compatible, so you couldn’t […]

Read More

Categories

July 2018
MTWTFSS
« Jun Aug »
 1
2345678
9101112131415
16171819202122
23242526272829
3031