Tuning Spark Jobs Running On YARN

Anubhav Tarar shows us ways of optimizing YARN to run Apache Spark jobs:

1. yarn-client mode:  In client mode, the driver runs in the client process, and the application master is only used for requesting resources from YARN. To manage the memory first make sure that you have your yarn-site.xml in spark,

  • spark.yarn.am.memory: To increase the memory you should set spark.yarn.am.memory property in spark-defaults.conf but make sure that you do not allocate more memory than capacity of node manager which is defined in yarn-site.xml as yarn.nodemanager.resource.memory-mb or you can also give it when you are running spark submit with –conf parameter

For example $SPARK_HOME/bin/spark-submit –conf spark.yarn.am.memory=1024m

Check it out for a few other configuration settings you can tweak.

Related Posts

Apache Avro 1.9.0 Released

Fokko Driesprong announces the release of Apache Avro 1.9.0: Avro is a remote procedure call and data serialization framework developed within Apache’s Hadoop project. It uses JSON for defining data types and protocols, and serializes data in a compact binary format. If you’re unfamiliar with Avro, I would highly recommend the explanation of Dennis Vriend […]

Read More

Temporal Tables with Flink

Marta Paes shows off a new feature in Apache Flink: In the 1.7 release, Flink has introduced the concept of temporal tables into its streaming SQL and Table API: parameterized views on append-only tables — or, any table that only allows records to be inserted, never updated or deleted — that are interpreted as a changelog and […]

Read More

Categories

June 2018
MTWTFSS
« May Jul »
 123
45678910
11121314151617
18192021222324
252627282930