Python And The Tidyverse

Kevin Feasel



Leo at Locke Data looks at a couple Python packages which implement Tidyverse concepts:

The Dplython README provides some clear examples of how the package can be used. Below is an summary of the common functions:

  • select() – used to get specific columns of the data-frame.

  • sift() – used to filter out rows based on the value of a variable in that row.

  • sample_n() and sample_frac() – used to provide a random sample of rows from the data-frame.

  • arrange() – used to sort results.

  • mutate() – used to create new columns based on existing columns.

I think the Tidyverse is immediately accessible for data platform professionals, so it’s good to see these concepts making their way to Python as well as R.

Related Posts

Building an Image Classifier with PyTorch

Rogier van der Geer shows how you can use PyTorch to build out a Convolutional Neural Network for image classification: The tool that we are going to use to make a classifier is called a convolutional neural network, or CNN. You can find a great explanation of what these are right here on wikipedia. But we […]

Read More

A Quick Keras Example

Shubham Dangare takes us through a quick example using Keras and TensorFlow in Python: Keras is a high-level neural networks API, written in Python and capable of running on top of Tensorflow, CNTK  or Theano. It was developed with a focus on enabling fast experimentation. In this blog, we are going to cover one small […]

Read More


June 2018
« May Jul »