Using Burrow To Monitor Kafka

Gaurav Garg shows us how to install and configure Burrow, a tool for monitoring Apache Kafka clusters:

According to Burrow’s GitHub page: Burrow is a Kafka monitoring tool that keeps track of consumer lag. It does not provide any user interface to monitor. It provides several HTTP request endpoints to get information about Kafka clusters and consumer groups. Burrow also has a notifier system that can notify you (via email or at an HTTP endpoint) if a consumer group has met certain criteria.

Burrow is designed in a modular way that separates the work done into multiple subsystems. Below are the subsystems in Burrow.

  • Clusters: This component periodically updates the topic list and the last committed offset for each partition.
  • Consumers: This component fetches the information about consumer groups like consumer lag, etc.
  • Storage: This component stores all the information in a system.
  • Evaluator: Gets information from storage and checks the status of consumer groups, like if it’s consuming messages at a slow rate using consumer lag evaluation rules.
  • Notifier: Requests the status of a consumer group and sends a notification if certain criteria are met via email, etc.
  • HTTP server: Provides HTTP endpoints to fetch information about a cluster and consumers.

This looks like a good tool to hook into an existing monitoring solution.

Related Posts

Metacat: Federated Metadata Discovery

Ajoy Majumdar and Zhen Li walk us through Metacat: The core architecture of the big data platform at Netflix involves three key services. These are the execution service (Genie), the metadata service, and the event service. These ideas are not unique to Netflix, but rather a reflection of the architecture that we felt would be […]

Read More

Understanding A Spark Streaming Workflow

Himanshu Gupta continues a series on structured streaming using Spark Streaming: Here we can clearly see that if new data is pushed to the source, Spark will run the “incremental” query that combines the previous running counts with the new data to compute updated counts. The “Input Table” here is the lines DataFrame which acts as a […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Categories

May 2018
MTWTFSS
« Apr Jun »
 123456
78910111213
14151617181920
21222324252627
28293031