The Elitist Shuffle And Recommenders

Rodrigo Agundez shows us a way of displaying fresh recommendations without retraining the recommender system:

Suppose you have 10,000 items in total that can be recommended to your user, you run the recommendation system over all the items and those 10,000 items get ranked in order of relevance of the content.

The application shows 5 items on the entry screen. The first time the user opens the application after the re-scoring process the top 5 ranked items are shown. It is decided that from now on (based on user control groups, investigation, AB testing, etc.) until the next re-scoring process the entry screen should not be the same every time and remain relevant for the user.

Based on an investigation from the data scientist it turns out that somewhat relevant items appear until item 100. Then the idea is to somehow shuffle those 100 items such that the top 5 items shown are still relevant but not the same.

Click through for an example in Python and how it compares favorably to a couple other shuffling algorithms.

Related Posts

Where Machine Learning And Econometrics Collide

Dave Giles shares some thoughts on how machine learning and econometrics relate: What is Machine Learning (ML), and how does it differ from Statistics (and hence, implicitly, from Econometrics)? Those are big questions, but I think that they’re ones that econometricians should be thinking about. And if I were starting out in Econometrics today, I’d […]

Read More

Auto ML With SQL Server 2019 Big Data Clusters

Marco Inchiosa has a model scenario for using Big Data Clusters to scale out a machine learning problem: H2O provides popular open source software for data science and machine learning on big data, including Apache SparkTM¬†integration. It provides two open source python AutoML classes: h2o.automl.H2OAutoML and pysparkling.ml.H2OAutoML. Both APIs use the same underlying algorithm implementations, […]

Read More

Categories

May 2018
MTWTFSS
« Apr Jun »
 123456
78910111213
14151617181920
21222324252627
28293031