Single-Node PySpark

Gengliang Weng, et al, explain that even a single Spark node can be useful:

It’s been a few years since Intel was able to push CPU clock rate higher. Rather than making a single core more powerful with higher frequency, the latest chips are scaling in terms of core count. Hence, it is not uncommon for laptops or workstations to have 16 cores, and servers to have 64 or even 128 cores. In this manner, these multi-core single-node machines’ work resemble a distributed system more than a traditional single core machine.

We often hear that distributed systems are slower than single-node systems when data fits in a single machine’s memory. By comparing memory usage and performance between Spark and Pandas using common SQL queries, we observed that is not always the case. We used three common SQL queries to show single-node comparison of Spark and Pandas:

Query 1. SELECT max(ss_list_price) FROM store_sales

Query 2. SELECT count(distinct ss_customer_sk) FROM store_sales

Query 3. SELECT sum(ss_net_profit) FROM store_sales GROUP BY ss_store_sk

To demonstrate the above, we measure the maximum data size (both Parquet and CSV) Pandas can load on a single node with 244 GB of memory, and compare the performance of three queries.

Click through for the results.

Related Posts

Bayesian Modeling Of Hardware Failure Rates

Sean Owen shows how you can use Bayesian statistical approaches with Spark Streaming, using the example of hard drive failure rates: This data doesn’t arrive all at once, in reality. It arrives in a stream, and so it’s natural to run these kind of queries continuously. This is simple with Apache Spark’s Structured Streaming, and proceeds […]

Read More

Working With Skewed Data In Pig

Dmitry Tolpeko explains how you can use the Weighted Range Partitioner in Apache Pig to work with highly skewed data: The problem is that there are 3,000 map tasks are launched to read the daily data and there are 250 distinct event types, so the mappers will produce 3,000 * 250 = 750,000 files per day. That’s […]

Read More

Categories

May 2018
MTWTFSS
« Apr Jun »
 123456
78910111213
14151617181920
21222324252627
28293031