Toward Interpretable Machine Learning

Cristoph Molnar shows off a couple of R packages which help interpret ML models:

Machine learning models repeatedly outperform interpretable, parametric models like the linear regression model. The gains in performance have a price: The models operate as black boxes which are not interpretable.

Fortunately, there are many methods that can make machine learning models interpretable. The R package imlprovides tools for analysing any black box machine learning model:

  • Feature importance: Which were the most important features?
  • Feature effects: How does a feature influence the prediction? (Partial dependence plots and individual conditional expectation curves)
  • Explanations for single predictions: How did the feature values of a single data point affect its prediction? (LIME and Shapley value)
  • Surrogate trees: Can we approximate the underlying black box model with a short decision tree?
  • The iml package works for any classification and regression machine learning model: random forests, linear models, neural networks, xgboost, etc.

This is a must-read if you’re getting into model-building. H/T R-Bloggers

Related Posts

Dealing With Zero-Value Rows In dplyr

Kieran Healy shows an oddity in dplyr when dealing with zero-value records: That looks fine. You can see in each panel the 2015 column is 100% Men. If we were working on this a bit longer we’d polish up the x-axis so that the dates were centered under the columns. But as an exploratory plot it’s […]

Read More

A Pessimistic View Of The State Of Deep Learning

William Vorhies provides us a negative (and necessary) look at the current state of Deep Learning solutions: Reinforcement Learning (RL) is arguably the hottest research area in AI today because it appears RL can be adapted to any problem that has a well-defined reward function.  That encompasses game play, robotics, self-driving cars, and frankly pretty […]

Read More

Categories

May 2018
MTWTFSS
« Apr Jun »
 123456
78910111213
14151617181920
21222324252627
28293031