Toward Interpretable Machine Learning

Cristoph Molnar shows off a couple of R packages which help interpret ML models:

Machine learning models repeatedly outperform interpretable, parametric models like the linear regression model. The gains in performance have a price: The models operate as black boxes which are not interpretable.

Fortunately, there are many methods that can make machine learning models interpretable. The R package imlprovides tools for analysing any black box machine learning model:

  • Feature importance: Which were the most important features?
  • Feature effects: How does a feature influence the prediction? (Partial dependence plots and individual conditional expectation curves)
  • Explanations for single predictions: How did the feature values of a single data point affect its prediction? (LIME and Shapley value)
  • Surrogate trees: Can we approximate the underlying black box model with a short decision tree?
  • The iml package works for any classification and regression machine learning model: random forests, linear models, neural networks, xgboost, etc.

This is a must-read if you’re getting into model-building. H/T R-Bloggers

Related Posts

Bayesian Modeling Of Hardware Failure Rates

Sean Owen shows how you can use Bayesian statistical approaches with Spark Streaming, using the example of hard drive failure rates: This data doesn’t arrive all at once, in reality. It arrives in a stream, and so it’s natural to run these kind of queries continuously. This is simple with Apache Spark’s Structured Streaming, and proceeds […]

Read More

Handling Definitional Changes In Predictive Variables

Vincent Granville explains how you can blend two different definitions of a variable of interest together: The reasons why scores can become meaningless over time is because data evolves. New features (variables) are added that were not available before, the definition of a metric is suddenly changed (for instance, the way income is measured) resulting […]

Read More


May 2018
« Apr Jun »