Eleni Markou shows how to connect to Google’s BigQuery service using Python and then R:
Some time ago we discussed how you can access data that are stored in Amazon Redshift and PostgreSQL with Python and R. Let’s say you did find an easy way to store a pile of data in your BigQuery data warehouse and keep them in sync. Now you want to start messing with it using statistical techniques, maybe build a model of your customers’ behavior, or try to predict your churn rate.
To do that, you will need to extract your data from BigQuery and use a framework or language that is best suited for data analysis and the most popular so far are Python and R. In this small tutorial we will see how we can extract data that is stored in Google BigQuery to load it with Python or R, and then use the numerous analytic libraries and algorithms that exist for these two languages.
Read on to see how easy it is for either language.
Comments closed