Accessing BigQuery Data From Python And R

Kevin Feasel


Python, R

Eleni Markou shows how to connect to Google’s BigQuery service using Python and then R:

Some time ago we discussed how you can access data that are stored in Amazon Redshift and PostgreSQL with Python and R. Let’s say you did find an easy way to store a pile of data in your BigQuery data warehouse and keep them in sync. Now you want to start messing with it using statistical techniques, maybe build a model of your customers’ behavior, or try to predict your churn rate.

To do that, you will need to extract your data from BigQuery and use a framework or language that is best suited for data analysis and the most popular so far are Python and R. In this small tutorial we will see how we can extract data that is stored in Google BigQuery to load it with Python or R, and then use the numerous analytic libraries and algorithms that exist for these two languages.

Read on to see how easy it is for either language.

Related Posts

Comparing TensorFlow Versus PyTorch

Anirudh Rao compares PyTorch to TensorFlow: For small-scale server-side deployments both frameworks are easy to wrap in e.g. a Flask web server. For mobile and embedded deployments, TensorFlow works really well. This is more than what can be said of most other deep learning frameworks including PyTorch. Deploying to Android or iOS does require a non-trivial amount of work in TensorFlow. You don’t have to rewrite the entire inference portion of your model in Java or C++. […]

Read More

Using wrapr For A Consistent Pipe With ggplot2

John Mount shows how you can use the wrapr pipe to perform data processing and building a ggplot2 visual: Now we can run a single pipeline that combines data processing steps and ggplot plot construction. data.frame(x = 1:20) %.>% mutate(., y = cos(3*x)) %.>% ggplot(., aes(x = x, y = y)) %.>% geom_point() %.>% geom_line() %.>% ggtitle("piped ggplot2") Check […]

Read More


April 2018
« Mar May »