Transforming Data: ELT Or ETL?

Kevin Feasel

2018-04-09

ETL

Artyom Keydunov argues that Extract-Load-Transform is a better model than Extract-Transform-Load:

ETL arose to solve a problem of providing businesses with clean and ready-to-analyze data. We remove dirty and irrelevant data and transform, enrich, and reshape the rest. The example of this could be sessionization: the process of creating sessions out of raw pageviews and users’ events.

ETL is complicated, especially the transformation part. It requires at least several months for a small-sized (less than 500 employees) company to get up and running. Once you have the initial transform jobs implemented, never-ending changes and updates will begin because data always evolves with business.

The other problem of ETL is that during the transformation, we reshape data into some specific form. This form usually lacks some data’s resolution and does not include data that is useless for that time or for that particular task. Often, “useless” data becomes “useful.” For example, if business users request daily data instead of weekly, then you will have to fix your transformation process, reshape data, and reload it. That would take a few weeks more.

Read on for more, including his argument for why ELT is better.

Related Posts

Data Transformation Tools In The Azure Space

James Serra gives us an overview of the major tools you would use for ETL and ELT in Azure: If you are building a big data solution in the cloud, you will likely be landing most of the source data into a data lake.  And much of this data will need to be transformed (i.e. […]

Read More

Apache Airflow Now A Top-Level Project

Fokko Driesprong announces that Apache Airflow is now a top-level Apache project: Today is a great day for Apache Airflow as it graduates from incubating status to a Top-Level Apache project. This is the next step of maturity for Airflow. For those unfamiliar, Airflow is an orchestration tool to schedule and orchestrate your data workflows. From […]

Read More

Categories

April 2018
MTWTFSS
« Mar May »
 1
2345678
9101112131415
16171819202122
23242526272829
30