Natural Language Generation With Markov Chains

Abdul Majed Raja shows off Markovify, a Python package which builds sentences using Markov chains:

Markov chains, named after Andrey Markov, are mathematical systems that hop from one “state” (a situation or set of values) to another. For example, if you made a Markov chain model of a baby’s behavior, you might include “playing,” “eating”, “sleeping,” and “crying” as states, which together with other behaviors could form a ‘state space’: a list of all possible states. In addition, on top of the state space, a Markov chain tells you the probability of hopping, or “transitioning,” from one state to any other state — -e.g., the chance that a baby currently playing will fall asleep in the next five minutes without crying first. Read more about how Markov Chain works in this interactive article by Victor Powell.

Click through for a fun example of headline generation.

Related Posts

Tuning xgboost Models In R

Gabriel Vasconcelos has a new series on tuning xgboost models: My favourite Boosting package is the xgboost, which will be used in all examples below. Before going to the data let’s talk about some of the parameters I believe to be the most important. These parameters mostly are used to control how much the model […]

Read More

The Elitist Shuffle And Recommenders

Rodrigo Agundez shows us a way of displaying fresh recommendations without retraining the recommender system: Suppose you have 10,000 items in total that can be recommended to your user, you run the recommendation system over all the items and those 10,000 items get ranked in order of relevance of the content. The application shows 5 […]

Read More

Categories

April 2018
MTWTFSS
« Mar May »
 1
2345678
9101112131415
16171819202122
23242526272829
30