The Shuffling Operator And Azure SQL DW

Arun Sirpal is ready to deal:

For the purposes of this post the TSQL shown is elementary (don’t be surprised by that), the point is really about SHUFFLE. So, I select the estimated plan for the following code.

SELECT SOD.[SalesOrderID],SOD.[ProductID], SOH.[TotalDue]
FROM [SalesLT].[SalesOrderDetail] SOD
JOIN [SalesLT].[SalesOrderHeader] SOH ON
SOH.[SalesOrderID] = SOD.[SalesOrderID]
WHERE SOH.[TotalDue] > 1000

Shuffle me once, why not shuffle me twice. If you REALLY want to see the EXPLAIN command output, then it looks like this snippet below.

The DSQL operation clearly states SHUFFLE_MOVE. Why am I getting this? What does it mean?

Shuffling data isn’t the worst thing in the world, but it is a fairly expensive operation all things considered.  Ideally, your warehouse architecture limits the number of shuffle operations, but considering that you can only hash on one key, sometimes it’s inevitable.

Related Posts

Time Travel in Snowflake

Koen Verbeeck shows an interesting feature in Snowflake: Time travel in Snowflake is similar to temporal tables in SQL Server: it allows you to query the history rows of a table. If you delete or update some rows, you can retrieve the status of the table at the point in time before you executed that […]

Read More

Scaling Power BI Premium Capacity

Matt Allington gives us instructions on how to scale Power BI Premium capacity: This is the third article in my series about how to make Power BI Premium more affordable for small to medium sized enterprises (SMEs).  In my first article I explained the problem and the logic behind how to configure a workable solution. […]

Read More

Categories

April 2018
MTWTFSS
« Mar May »
 1
2345678
9101112131415
16171819202122
23242526272829
30