The Data Exploration Process

Stacia Varga takes a step back from analyzing NHL data to explore it a little more:

As I mentioned in my last post, I am currently in an exploratory phase with my data analytics project. Although I would love to dive in and do some cool predictive analytics or machine learning projects, I really need to continue learning as much about my data as possible before diving into more advanced techniques.

My data exploration process has the following four steps:

  1. Assess the data that I have at a high level

  2. Determine how this data is relevant to the analytics project I want to undertake

  3. Get a general overview of the data characteristics by calculating simple statistics

  4. Understand the “middles” and the “ends” of your numeric data points

There’s some good stuff in here.  I particularly appreciate Stacia’s consideration of data exploration as an iterative process.

Related Posts

Where Machine Learning And Econometrics Collide

Dave Giles shares some thoughts on how machine learning and econometrics relate: What is Machine Learning (ML), and how does it differ from Statistics (and hence, implicitly, from Econometrics)? Those are big questions, but I think that they’re ones that econometricians should be thinking about. And if I were starting out in Econometrics today, I’d […]

Read More

Solving Naive Bayes By Hand

I have a post that requires math and is meaner toward the Buffalo Bills than I normally am: Trust the ProcessThere are three steps to the process of solving the simplest of Naive Bayes algorithms. They are:1. Find the probability of winning a game (that is, our prior probability).2. Find the probability of winning given each input variable: whether Josh Allen starts the game, whether the team is […]

Read More


March 2018
« Feb Apr »