Investigating London Crime Data

Carl Goodwin digs into London crime data by borough and sees if he can predict crime rates:

Optimal predictions sit close to, or on, the dashed line in the graphic below, i.e. where the prediction for each observation equals the actual. The Root Mean Squared Error (RMSE) measures the average differences, so should be as small as possible. And R-squared measures the correlation between prediction and actual, where 0 reflects no correlation, and 1 perfect positive correlation.

Our supervised machine learning outcomes from the CART and GLMmodels have weaker RMSEs, and visually exhibit some dispersion in the predictions at higher counts. Stochastic Gradient Boosting, Cubist and Random Forest have handled the higher counts better as we see from the visually tighter clustering.

It was Random Forest that produced marginally the smallest prediction error. And it was a parameter unique to the Random Forest model which almost tripped me up as discussed in the supporting documentation.

Also be sure to read his notebook to get the full story.  H/T R-Bloggers

Related Posts

Sentiment Analysis with Spark on Qubole

Jonathan Day, et al, have a tutorial on using Qubole to build a sentiment analysis model: This post covers the use of Qubole, Zeppelin, PySpark, and H2O PySparkling to develop a sentiment analysis model capable of providing real-time alerts on customer product reviews. In particular, this model allows users to monitor any natural language text […]

Read More

Running Spark MLlib to Feed Power BI

Brad Llewellyn shows how you can take Spark MLlib results and feed them into Power BI: MLlib is one of the primary extensions of Spark, along with Spark SQL, Spark Streaming and GraphX.  It is a machine learning framework built from the ground up to be massively scalable and operate within Spark.  This makes it […]

Read More

Categories

March 2018
MTWTFSS
« Feb Apr »
 1234
567891011
12131415161718
19202122232425
262728293031