Investigating London Crime Data

Carl Goodwin digs into London crime data by borough and sees if he can predict crime rates:

Optimal predictions sit close to, or on, the dashed line in the graphic below, i.e. where the prediction for each observation equals the actual. The Root Mean Squared Error (RMSE) measures the average differences, so should be as small as possible. And R-squared measures the correlation between prediction and actual, where 0 reflects no correlation, and 1 perfect positive correlation.

Our supervised machine learning outcomes from the CART and GLMmodels have weaker RMSEs, and visually exhibit some dispersion in the predictions at higher counts. Stochastic Gradient Boosting, Cubist and Random Forest have handled the higher counts better as we see from the visually tighter clustering.

It was Random Forest that produced marginally the smallest prediction error. And it was a parameter unique to the Random Forest model which almost tripped me up as discussed in the supporting documentation.

Also be sure to read his notebook to get the full story.  H/T R-Bloggers

Related Posts

Biases in Tree-Based Models

Nina Zumel looks at tree-based ensembling models like random forest and gradient boost and shows that they can be biased: In our previous article , we showed that generalized linear models are unbiased, or calibrated: they preserve the conditional expectations and rollups of the training data. A calibrated model is important in many applications, particularly when financial data […]

Read More

R 3.6.1 Available

David Smith notes a new version of R is available: On July 5, the R Core Group released the source code for the latest update to R, R 3.6.1, and binaries are now available to download for Windows, Linux and Mac from your local CRAN mirror. R 3.6.1 is a minor update to R that fixes a few bugs. […]

Read More

Categories

March 2018
MTWTFSS
« Feb Apr »
 1234
567891011
12131415161718
19202122232425
262728293031