See The Pernicious Effects Of Your UDFs

Pedro Lopes announces an improvement to SQL Server execution plan results in 2017 CU3:

As I mentioned on yesterday’s post, with the recent release of SQL Server 2017 CU3, we released yet more showplan enhancements: you can see other posts related to showplan enhancements here.

In this article I’ll talk about the second showplan improvement we worked on, to assist in the discoverability of UDF usage impact on query execution.

The scenario is that if a query uses one or more user-defined scalar functions (such as T-SQL functions or CLR functions), a significant portion of query execution time may be spent inside those functions, depending on the function definition. And this may be not immediately obvious by looking at the query execution plan.

Recently, we added information on overall query CPU and elapsed time tracking for statistics showplan xml (both in ms), found in the root node of an actual plan (on which I blogged about here). We now added two new attributes: UdfCpuTime and UdfElapsedTime. These provide the total CPU and elapsed time (again, both in ms) that is spent inside all scalar user-defined functions, during the execution of a query.

I love it.  UDFs have historically been silent query killers, as the execution plan would gleefully think that the function call is practically free because it’d only show a single iteration.

Related Posts

All Execution Plans Are Estimates

Grant Fritchey drops a bomb on us: All these resources, yet, for any given query, all the plans will be identical (assuming no recompile at work). Why? Because they’re all the same plan. Each and every one of them is an estimated plan. Only an estimated plan. This is why the estimated costs stay the […]

Read More

The Optimal Kafka Message Size

Guy Shilo wants to figure out the right chunk size for a Kafka message: I wrote a python program that runs a producer and a consumer for 30 minutes with different message sizes and measures how many messages per second it can deliver, or the Kafka cluster throughput. I did not care about the message […]

Read More


February 2018
« Jan Mar »