Boxuan Cui introduces DataExplorer, an R package dedicated to assist with exploratory data analysis:

According to a Forbes article, cleaning and organizing data is the most time-consuming and least enjoyable data science task. Of all the resources out there, DataExplorer is one of them, with its sole mission to minimize the 80%, and make it enjoyable. As a result, one fundamental design principle is to be extremely user-friendly. Most of the time, one function call is all you need.

Data manipulation is powered by data.table, so tasks involving big datasets usually complete in a few seconds. In addition, the package is flexible enough with input data classes, so you should be able to throw in any data.frame-like objects. However, certain functions require a data.table class object as input due to the update-by-reference feature, which I will cover in later part of the post.

For my money, that number is closer to 90%.  I will have to check this package out.

Related Posts

Data Science And Data Engineering In HDP 3.0

Saumitra Buragohain, et al, show off some of the things added to the Hortonworks Data Platform for data scientists and data engineers: We leverage the power of HDP 3.0 from efficient storage (erasure coding), GPU pooling to containerized TensorFlow and Zeppelin to enable this use case. We will the save the details for a different […]

Read More

Using wrapr For A Consistent Pipe With ggplot2

John Mount shows how you can use the wrapr pipe to perform data processing and building a ggplot2 visual: Now we can run a single pipeline that combines data processing steps and ggplot plot construction. data.frame(x = 1:20) %.>% mutate(., y = cos(3*x)) %.>% ggplot(., aes(x = x, y = y)) %.>% geom_point() %.>% geom_line() %.>% ggtitle("piped ggplot2") Check […]

Read More


February 2018
« Jan Mar »