So You Want To Monitor Kafka…

Ben Summer reviews a Kafka catstrophe and explains how to avoid it:

Here at New Relic, the Edge team is responsible for the pipelines that handle all the data coming into our company. We were an early adopter of Apache Kafka, which we began using to power this data pipeline. Our initial results were outstanding. Our cluster handled any amount of data we threw at it; it showed incredible fault tolerance and scaled horizontally. Our implementation was so stable for so long that we basically forgot about it. Which is to say, we totally neglected it. And then one day we experienced a catastrophic incident.

Our main cluster seized up. All graphs, charts, and dashboards went blank. Suddenly we were totally in the dark — and so were our customers. The incident lasted almost four hours, and in the end, an unsatisfactory number of customers experienced some kind of data loss. It was an epic disaster. Our Kafka infrastructure had been running like a champ for more than a year and suddenly it had ground to a halt.

This happened several years ago, but to this day we still refer to the incident as the “Kafkapocalypse.”

Ben has a couple interesting stories and some good rules of thumb for maintaining a Kafka cluster.

Related Posts

Last-Click Attribution With Databricks Delta

Caryl Yuhas and Denny Lee give us an example of building a last-click digital marketing attribution model with Databricks Delta: The first thing we will need to do is to establish the impression and conversion data streams.   The impression data stream provides us a real-time view of the attributes associated with those customers who were served the […]

Read More

Working With Kafka At Scale

Tony Mancill has some tips for working with large-scale Kafka clusters: Unless you have architectural needs that require you to do otherwise, use random partitioning when writing to topics. When you’re operating at scale, uneven data rates among partitions can be difficult to manage. There are three main reasons for this: First, consumers of the “hot” […]

Read More

Categories

December 2017
MTWTFSS
« Nov Jan »
 123
45678910
11121314151617
18192021222324
25262728293031