Image Counts For Neural Network Training

Pete Warden shares his rule of thumb for how many images you need to train a neural network:

In the early days I would reply with the technically most correct, but also useless answer of “it depends”, but over the last couple of years I’ve realized that just having a very approximate rule of thumb is useful, so here it is for posterity:

You need 1,000 representative images for each class.

Like all models, this rule is wrong but sometimes useful. In the rest of this post I’ll cover where it came from, why it’s wrong, and what it’s still good for.

Read on to learn where the number 1000 came from and get some good hints, like flipping and rescaling images.

Related Posts

Anomaly Detection With Python

Robert Sheldon continues his SQL Server Machine Learning Series: As important as these concepts are to working Python and MLS, the purpose in covering them was meant only to provide you with a foundation for doing what’s really important in MLS, that is, using Python (or the R language) to analyze data and present the […]

Read More

Non-English Natural Language Processing

The folks at BNOSAC have announced a new natural language processing toolkit for R: BNOSAC is happy to announce the release of the udpipe R package (https://bnosac.github.io/udpipe/en) which is a Natural Language Processing toolkit that provides language-agnostic ‘tokenization’, ‘parts of speech tagging’, ‘lemmatization’, ‘morphological feature tagging’ and ‘dependency parsing’ of raw text. Next to text […]

Read More

Categories

December 2017
MTWTFSS
« Nov Jan »
 123
45678910
11121314151617
18192021222324
25262728293031