Image Counts For Neural Network Training

Pete Warden shares his rule of thumb for how many images you need to train a neural network:

In the early days I would reply with the technically most correct, but also useless answer of “it depends”, but over the last couple of years I’ve realized that just having a very approximate rule of thumb is useful, so here it is for posterity:

You need 1,000 representative images for each class.

Like all models, this rule is wrong but sometimes useful. In the rest of this post I’ll cover where it came from, why it’s wrong, and what it’s still good for.

Read on to learn where the number 1000 came from and get some good hints, like flipping and rescaling images.

Related Posts

Natural Language Generation With Markov Chains

Abdul Majed Raja shows off Markovify, a Python package which builds sentences using Markov chains: Markov chains, named after Andrey Markov, are mathematical systems that hop from one “state” (a situation or set of values) to another. For example, if you made a Markov chain model of a baby’s behavior, you might include “playing,” “eating”, […]

Read More

TensorFlow Lite

Laurence Maroney explains TensorFlow Lite: TensorFlow Lite is TensorFlow’s lightweight solution for mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size. TensorFlow Lite also supports hardware acceleration with the Android Neural Networks API. It’s designed to be low-latency, with optimized kernels for mobile apps, pre-fused activations and […]

Read More

Categories

December 2017
MTWTFSS
« Nov Jan »
 123
45678910
11121314151617
18192021222324
25262728293031