Image Counts For Neural Network Training

Pete Warden shares his rule of thumb for how many images you need to train a neural network:

In the early days I would reply with the technically most correct, but also useless answer of “it depends”, but over the last couple of years I’ve realized that just having a very approximate rule of thumb is useful, so here it is for posterity:

You need 1,000 representative images for each class.

Like all models, this rule is wrong but sometimes useful. In the rest of this post I’ll cover where it came from, why it’s wrong, and what it’s still good for.

Read on to learn where the number 1000 came from and get some good hints, like flipping and rescaling images.

Related Posts

Explaining Neural Networks With H2O

Shirin Glander explains some of the concepts behind neural networks using H2O as a guide: Before, when describing the simple perceptron, I said that a result is calculated in a neuron, e.g. by summing up all the incoming data multiplied by weights. However, this has one big disadvantage: such an approach would only enable our neural net […]

Read More

Azure ML Studio Supports R 3.4

David Smith notes that Azure ML Studio now supports R version 3.4: With the Execute R Script module you can immediately use more than 650 R packages which come preinstalled in the Azure ML Studio environment. You can also use other R packages (including packages not on CRAN) and source in R scripts you develop elsewhere (as […]

Read More


December 2017
« Nov Jan »