Training Convolutional Neural Networks On Satellite Image Data

Ahmet Taspinar builds a neural net which detects roads in satellite images:

Next we will determine the contents of each tile image, using data from the NWB Wegvakken (version September 2017). This is a file containing all of the roads of the Netherlands, which gets updated frequently. It is possible to download it in the form of a shapefile from this location.
Shapefiles contain shapes with geospatial data and are normally opened with GIS software like ArcGIS or QGIS. It is also possible to open it within Python, by using the pyshp library.

This is a pretty lengthy and interesting tutorial.  H/T Data Science Central

Related Posts

XGBoost With Python

Fisseha Berhane looked at Extreme Gradient Boosting with R and now covers it in Python: In both R and Python, the default base learners are trees (gbtree) but we can also specify gblinear for linear models and dart for both classification and regression problems. In this post, I will optimize only three of the parameters […]

Read More

Calling Azure Cognitive Services From SSIS

Rolf Tesmer shows off how easy it is to call Azure Cognitive Services from SQL Server Integration Services: My SQL SSIS package leverages the Translator Text API service.  For those who want to learn the secret sauce then I suggest to check here – essentially this API is pretty simple; It accepts source text, source language and target language.  (The API can translate to/from over […]

Read More


December 2017
« Nov Jan »