Training Convolutional Neural Networks On Satellite Image Data

Ahmet Taspinar builds a neural net which detects roads in satellite images:

Next we will determine the contents of each tile image, using data from the NWB Wegvakken (version September 2017). This is a file containing all of the roads of the Netherlands, which gets updated frequently. It is possible to download it in the form of a shapefile from this location.
Shapefiles contain shapes with geospatial data and are normally opened with GIS software like ArcGIS or QGIS. It is also possible to open it within Python, by using the pyshp library.

This is a pretty lengthy and interesting tutorial.  H/T Data Science Central

Related Posts

Native Math Libraries And Spark ML

Zuling Kang shares with us how we can use native math libraries in netlib-java to speed up certain machine learning algorithms in Apache Spark: Spark’s MLlib uses the Breeze linear algebra package, which depends on netlib-java for optimized numerical processing.  netlib-java is a wrapper for low-level BLAS, LAPACK, and ARPACK libraries. However, due to licensing issues with runtime proprietary binaries, neither the Cloudera distribution of […]

Read More

No-Code ML On Cloudera Data Science Workbench

Tim Spann has a post covering ML on the Cloudera Data Science Workbench: Using Cloudera Data Science Workbench with Apache NiFi, we can easily call functions within our deployed models from Apache NiFi as part of flows. I am working against CDSW on HDP (https://www.cloudera.com/documentation/data-science-workbench/latest/topics/cdsw_hdp.html),  but it will work for all CDSW regardless of install type.In my […]

Read More

Categories

December 2017
MTWTFSS
« Nov Jan »
 123
45678910
11121314151617
18192021222324
25262728293031