Tidy Word Vectors Revisited

Julia Silge revisits her Hacker News word vectorization problem:

So hooray! We have found word vectors again, a bit faster, with clearer and easier-to-understand code. I do argue that this is a real benefit of this approach; it’s based on counting, dividing, and matrix decomposition and is thus much easier to understand and implement than anything with a neural network. And the results?

Click through to see the new method, as well as some basic analogy testing.

Related Posts

Performance Tuning Neural Network Training

Sean Owen takes us through a few techniques for speeding up neural network model training: Step #2: Use Early StoppingKeras (and other frameworks) have built-in support for stopping when further training appears to be making the model worse. In Keras, it’s the EarlyStopping callback. Using it means passing the validation data to the training process for evaluation […]

Read More

Text Analysis from Google Sheets

Federico Pascual shows how you can use MonkeyLearn to perform text analysis (including sentiment analysis and categorization) from a Google Sheets spreadsheet: Carrying out a customer survey, for example, can be useful to obtain crucial insights into the overall customer experience of your clients. But the data obtained from these surveys can be incredibly difficult […]

Read More

Categories

November 2017
MTWTFSS
« Oct Dec »
 12345
6789101112
13141516171819
20212223242526
27282930