Machine Learning Data Preparation Tips

Jen Underwood has some good tips when preparing data for a machine learning operation:

Data preparation for machine learning requires business domain expertise, bias awareness and an experimental thought process. Before preparing your data, you’ll first define a business problem solve. During that exercise, you’ll select an outcome metric and brainstorm potential input variables that influence it from many varied perspectives. From there you will begin identifying, collecting, cleaning, shaping and sampling data to run through automated machine learning model processes.

Note that it is also not unusual for relevant machine learning input data to occur outside of existing transactional processes. If that is the case, you can still start creating a first-generation machine learning model with existing data and continue to build new model versions over time as supplementary data is acquired.

Click through for the ten tips.

Related Posts

Where Machine Learning And Econometrics Collide

Dave Giles shares some thoughts on how machine learning and econometrics relate: What is Machine Learning (ML), and how does it differ from Statistics (and hence, implicitly, from Econometrics)? Those are big questions, but I think that they’re ones that econometricians should be thinking about. And if I were starting out in Econometrics today, I’d […]

Read More

Auto ML With SQL Server 2019 Big Data Clusters

Marco Inchiosa has a model scenario for using Big Data Clusters to scale out a machine learning problem: H2O provides popular open source software for data science and machine learning on big data, including Apache SparkTM integration. It provides two open source python AutoML classes: h2o.automl.H2OAutoML and pysparkling.ml.H2OAutoML. Both APIs use the same underlying algorithm implementations, […]

Read More

Categories

November 2017
MTWTFSS
« Oct Dec »
 12345
6789101112
13141516171819
20212223242526
27282930