Installing SQL Server 2017 Machine Learning Services

Ginger Grant shows how to install SQL Server 2017 Machine Learning Services:

There are two installation options:  In-Database or Standalone.  If you are evaluating Machine Learning Services and you have no knowledge of what the load may be, start by selecting the Machine Learning Service In-Database.  There are several reasons why by default you want to select the In-Database option. One of the problems that Microsoft was looking to solve by incorporating advanced data analytics was to improve performance of the native code by greatly reducing data latency.  If you are analyzing a lot of data which is stored within SQL Server, the performance will be improved if the data does not need to be moved around on a network. Also, the licensing costs of installing R Server standalone also need to be evaluated with a Microsoft representative as well. An evaluation of the resource load on the network, as well as analysis of the code running on SQL Server should be performed prior to the decision to install the Machine Learning Server Standalone.

Read the whole thing.

Related Posts

Where Machine Learning And Econometrics Collide

Dave Giles shares some thoughts on how machine learning and econometrics relate: What is Machine Learning (ML), and how does it differ from Statistics (and hence, implicitly, from Econometrics)? Those are big questions, but I think that they’re ones that econometricians should be thinking about. And if I were starting out in Econometrics today, I’d […]

Read More

Auto ML With SQL Server 2019 Big Data Clusters

Marco Inchiosa has a model scenario for using Big Data Clusters to scale out a machine learning problem: H2O provides popular open source software for data science and machine learning on big data, including Apache SparkTM integration. It provides two open source python AutoML classes: h2o.automl.H2OAutoML and Both APIs use the same underlying algorithm implementations, […]

Read More


November 2017
« Oct Dec »