Creating A Poekr AI In Python

Kevin Jacobs has a fairly simple framework for building poker-playing bots:

The bot uses Monte Carlo simulations running from a given state. Suppose you start with 2 high cards (two Kings for example), then the chances are high that you will win. The Monte Carlo simulation then simulates a given number of games from that point and evaluates which percentage of games you will win given these cards. If another King shows during the flop, then your chance of winning will increase. The Monte Carlo simulation starting at that point, will yield a higher winning probability since you will win more games on average.

If we run the simulations, you can see that the bot based on Monte Carlo simulations outperforms the always calling bot. If you start with a stack of $100,-, you will on average end with a stack of $120,- (when playing against the always-calling bot).

It’s a start, and an opening for more sophisticated logic and analysis.

Related Posts

P-Hacking and Multiple Comparison Bias

Patrick David has a great article on hypothesis testing, p-hacking, and multiple comparison bias: The most important part of hypothesis testing is being clear what question we are trying to answer. In our case we are asking:“Could the most extreme value happen by chance?”The most extreme value we define as the greatest absolute AMVR deviation from […]

Read More

Feature And Text Classification Using Naive Bayes In R

I wrap up my series on the Naive Bayes class of algorithms, finally writing some code along the way: Now we’re going to look at movie reviews and predict whether a movie review is a positive or a negative review based on its words. If you want to play along at home, grab the data set, […]

Read More


November 2017
« Oct Dec »