The Importance Of Distributions

Jocelyn Barker explains distributions using role-playing games as an example:

We see that for the entire curve, our odds of success goes down when we add criticals and for most of the curve, it goes up for 3z8. Lets think about why. We know the guards are more likely to roll a 20 and less likely to roll a 1 from the distribution we made earlier. This happens about 14% of the time, which is pretty common, and when it happens, the rogue has to have a very high modifier and still roll well to overcome it unless they also roll a 20. On the other hand, with 3z8 system, criticals are far less common and everyone rolls close to average more of the time. The expected value for the rogue is ~10.5, where as it is ~14 for the guards, so when everyone performs close to average, the rogue only needs a small modifier to have a reasonable chance of success.

It’s a nice spin on a classic statistics lesson.

Related Posts

The Basics Of PCA In R

Prashant Shekhar gives us an overview of Principal Component Analysis using R: PCA changes the axis towards the direction of maximum variance and then takes projection on this new axis. The direction of maximum variance is represented by Principal Components (PC1). There are multiple principal components depending on the number of dimensions (features) in the […]

Read More

Investigating The gcForest Algorithm

William Vorhies describes a new algorithm with strong potential: gcForest (multi-Grained Cascade Forest) is a decision tree ensemble approach in which the cascade structure of deep nets is retained but where the opaque edges and node neurons are replaced by groups of random forests paired with completely-random tree forests.  In this case, typically two of […]

Read More

Categories

November 2017
MTWTFSS
« Oct Dec »
 12345
6789101112
13141516171819
20212223242526
27282930