Sentiment Analysis With Python In SQL Server

Nellie Gustafsson has a quick example of sentiment analysis using SQL Server Machine Learning Services:

You don’t have to be a data scientist to use machine learning in SQL Server. You can use pre-trained models available for usage out of the box to do your analysis. The following example shows you how you quickly get started and do text sentiment analysis.

Before starting to use this model, you need to install it. The installation is quick and instructions for installing the model can be found here: How to install the models on SQL Server

Once you have SQL Server installed with Machine Learning Services, enabled external script execution, and installed the pre-trained model, you can execute the following  script to create a stored procedure that uses Python and the microsoftml function get_sentiment with the pre-trained model to determine the probability of positive sentiment of a text:

Click through to read the whole thing.

Related Posts

Lasso and Ridge Regression in Python

Kristian Larsen shows off a few regression techniques using Python: Variables with a regression coefficient equal to zero after the shrinkage process are excluded from the model. Variables with non-zero regression coefficients variables are most strongly associated with the response variable. Therefore, when you conduct a regression model it can be helpful to do a […]

Read More

Patterns for ML Models in Production

Jeff Fletcher shows four patterns for productionalizing Machine Learning models, as well as some things to take care of once you’re in production: Operational DatabasesThis option is sometimes considered to be  real-time as the information is provided “as its needed,” but it is still a batch method. Using our telco example, a batch process can […]

Read More


November 2017
« Oct Dec »