Data Set Robustness

Tomaz Kastrun shows how robust the iris data set is:

Conclusion, IRIS dataset is – due to the nature of the measurments and observations – robust and rigid; one can get very good accuracy results on a small training set. Everything beyond 30% for training the model, is for this particular case, just additional overload.

The general concept here is, how small can you arbitrarily slice the data and still come up with the same result as the overall data set?  Or, phrased differently, how much data do you need to collect before predictions stabilize?  Read on to see how Tomaz solves the problem.

Related Posts

Where Machine Learning And Econometrics Collide

Dave Giles shares some thoughts on how machine learning and econometrics relate: What is Machine Learning (ML), and how does it differ from Statistics (and hence, implicitly, from Econometrics)? Those are big questions, but I think that they’re ones that econometricians should be thinking about. And if I were starting out in Econometrics today, I’d […]

Read More

Auto ML With SQL Server 2019 Big Data Clusters

Marco Inchiosa has a model scenario for using Big Data Clusters to scale out a machine learning problem: H2O provides popular open source software for data science and machine learning on big data, including Apache SparkTM integration. It provides two open source python AutoML classes: h2o.automl.H2OAutoML and Both APIs use the same underlying algorithm implementations, […]

Read More


October 2017
« Sep Nov »