Data Set Robustness

Tomaz Kastrun shows how robust the iris data set is:

Conclusion, IRIS dataset is – due to the nature of the measurments and observations – robust and rigid; one can get very good accuracy results on a small training set. Everything beyond 30% for training the model, is for this particular case, just additional overload.

The general concept here is, how small can you arbitrarily slice the data and still come up with the same result as the overall data set?  Or, phrased differently, how much data do you need to collect before predictions stabilize?  Read on to see how Tomaz solves the problem.

Related Posts

Naive Bays in R

Zulaikha Lateef takes us through the Naive Bayes algorithm and implementations in R: Naive Bayes is a Supervised Machine Learning algorithm based on the Bayes Theorem that is used to solve classification problems by following a probabilistic approach. It is based on the idea that the predictor variables in a Machine Learning model are independent of […]

Read More

Exporting Data from Power Query with R

Leila Etaati shows how you can use R to export data from Power Query to disk or to SQL Server: There is always a discussion on how to store back the data from Power BI to local computer or SQL Server Databases, in this short blog, I will show how to do it by writing […]

Read More


October 2017
« Sep Nov »