Build Versus Buy For Hadoop

Kevin Feasel

2017-10-24

Hadoop

Tom Phelan walks through some thoughts on whether to build versus buy when using big data platforms:

This means you absolutely must sweat the details up front. Big Data project failures are more often than not predicated by the statement: “We will do this bit now, and figure the rest out later”. But you need to begin with the end in mind.

You need to know the performance that you’ll be able to deliver and what your requirements are. You need to know how to integrate with your corporate Active Directory, and LDAP, and Kerberos services. You need to know your network topology and security requirements as well as the required user roles and responsibilities breakdown. You need to know how you’ll handle high availability, QoS, and multi-tenancy. You need to know how you’ll manage upgrades to the latest versions of your Hadoop distribution or other big data tools, and how you’ll respond to requests for new big data frameworks and new data science tools. If not, you’re just asking for trouble.

The motif in his post is building your own car, which makes sense as an extended metaphor.

Related Posts

Getting Started With Zeppelin

Sangeeta Gulia shows us how to get started building notebooks with Apache Zeppelin on top of Spark: There are 3 interpreter modes available in Zeppelin. 1) Shared Mode In Shared mode, a SparkContext and a Scala REPL is being shared among all interpreters in the group. So every Note will be sharing single SparkContext and single […]

Read More

How Per-Second AWS Billing Helps With Data Processing

Prakash Chockalingam explains how AWS per-second billing can make resource allocation easier: Because of the hourly increments in billing, users spend a lot of time playing a giant game of Tetris with their big data workloads — figuring out how to pack jobs to use every minute of the compute hour. Examples: If a job […]

Read More

Categories

October 2017
MTWTFSS
« Sep Nov »
 1
2345678
9101112131415
16171819202122
23242526272829
3031