Build Versus Buy For Hadoop

Kevin Feasel

2017-10-24

Hadoop

Tom Phelan walks through some thoughts on whether to build versus buy when using big data platforms:

This means you absolutely must sweat the details up front. Big Data project failures are more often than not predicated by the statement: “We will do this bit now, and figure the rest out later”. But you need to begin with the end in mind.

You need to know the performance that you’ll be able to deliver and what your requirements are. You need to know how to integrate with your corporate Active Directory, and LDAP, and Kerberos services. You need to know your network topology and security requirements as well as the required user roles and responsibilities breakdown. You need to know how you’ll handle high availability, QoS, and multi-tenancy. You need to know how you’ll manage upgrades to the latest versions of your Hadoop distribution or other big data tools, and how you’ll respond to requests for new big data frameworks and new data science tools. If not, you’re just asking for trouble.

The motif in his post is building your own car, which makes sense as an extended metaphor.

Related Posts

Testing an Event-Driven System

Andy Chambers takes us through how to test an event-driven system: Each distinct service has a nice, pure data model with extensive unit tests, but now with new clients (and consequently new requirements) coming thick and fast, the number of these services is rapidly increasing. The testing guardian angel who sometimes visits your thoughts during […]

Read More

Processing Fixed-Width Files with Spark

Subhasish Guha shows how you can read a fixed-with file with Apache Spark: A fixed width file is a very common flat file format when working with SAP, Mainframe, and Web Logs. Converting the data into a dataframe using metadata is always a challenge for Spark Developers. This particular article talks about all kinds of […]

Read More

Categories

October 2017
MTWTFSS
« Sep Nov »
 1
2345678
9101112131415
16171819202122
23242526272829
3031