Stateful Processing In Spark Streaming

Bill Chambers and Jules Damji look at a couple of stateful scenarios within Spark Streaming:

No streaming events are free of duplicate entries. Dropping duplicate entries in record-at-a-time systems is imperative—and often a cumbersome operation for a couple of reasons. First, you’ll have to process small or large batches of records at time to discard them. Second, some events, because of network high latencies, may arrive out-of-order or late, which may force you to reiterate or repeat the process. How do you account for that?

Structured Streaming, which ensures exactly once-semantics, can drop duplicate messages as they come in based on arbitrary keys. To deduplicate data, Spark will maintain a number of user-specified keys and ensure that duplicates, when encountered, are discarded.

Just as other stateful processing APIs in Structured Streaming are bounded by declaring watermarking for late data semantics, so is dropping duplicates. Without watermarking, the maintained state can grow infinitely over the course of your stream.

In this scenario, you would still want some sort of de-duplication code at the far end of your process if you can never have duplicates come in across the lifetime of the application.  This sounds like it’s more about preventing bursty duplicates from sensors.

Related Posts

Pivoting Spark DataFrames

Unmesha Sreeveni shows how we can pivot a DataFrame in Apache Spark using one line of code: A pivot can be thought of as translating rows into columns while applying one or more aggregations. Lets see how we can achieve the same using the above dataframe. We will pivot the data based on “Item” column. […]

Read More

Troubleshooting Spark Performance

Bikas Saha and Mridul Murlidharan explain some of the basics of performance tuning with Apache Spark: Our objective was to build a system that would provide an intuitive insight into Spark jobs that not just provides visibility but also codifies the best practices and deep experience we have gained after years of debugging and optimizing […]

Read More

Categories

October 2017
MTWTFSS
« Sep Nov »
 1
2345678
9101112131415
16171819202122
23242526272829
3031