Data Lakes Aren’t New

Shannon Lowder reveals one of the deep, dark data lake secrets:

Turns out there are three basic zones or areas to a data lake. Raw, Managed, and Presentation.

The raw zone should be optimized for fast storage.  The goal is to get the data in as quickly as possible.  Don’t make any changes to this data.  You want it stored as close to the original format as possible.  It sounds just like staged data to me.  Data you’d build an extract package to get from source to your staging environment, right?

Maybe you’re thinking this is just a coincidence…let’s move on.

Spoilers:  it’s not a coincidence.

Related Posts

Accessing Data in Azure Data Lake Storage Gen 2

James Serra gives us several methods to access data in Azure Data Lake Storage Gen 2: With data lakes becoming popular, and Azure Data Lake Store (ADLS) Gen2 being used for many of them, a common question I am asked about is “How can I access data in ADLS Gen2 instead of a copy of the data […]

Read More

Modeling Semi-Additive Measures

Paul Poco shows a couple techniques for modeling semi-additive measures in Analysis Services and Power BI: As mentioned earlier, the most commonly encountered approach is Option 2, the snapshot fact table. The main drawback of this approach is that the fact table’s size will grow extremely fast. For example, if you want to calculate the headcount in a company with 10,000 employees on average, and you want 5 […]

Read More

Categories

October 2017
MTWTFSS
« Sep Nov »
 1
2345678
9101112131415
16171819202122
23242526272829
3031