Crossing The Streams With Kafka

Himani Arora shows how to join two Kafka streams together:

KStream-KStream Join

It is a sliding window join, that means, all tuples close to each other with regard to time are joined. Time here is the difference up to size of the window.

These joins are always windowed joins because otherwise, the size of the internal state store used to perform the join would grow indefinitely.

In the following example, we perform an inner join between two streams. The output the joined stream will be of type KStream<K, ...>

Read on to learn more about two additional join types.

Related Posts

Auto ML With SQL Server 2019 Big Data Clusters

Marco Inchiosa has a model scenario for using Big Data Clusters to scale out a machine learning problem: H2O provides popular open source software for data science and machine learning on big data, including Apache SparkTM integration. It provides two open source python AutoML classes: h2o.automl.H2OAutoML and pysparkling.ml.H2OAutoML. Both APIs use the same underlying algorithm implementations, […]

Read More

Erasure Coding In Hadoop

Guy Shilo explains erasure coding, a new feature in Hadoop 3: The benefits are, of course, space-saving, and for large files also improved performance (blocks striped across datanodes can be read in parallel, and less blocks are written because there is no x3 replication). The larger the file the more notable is the performance gain. […]

Read More

Categories

October 2017
MTWTFSS
« Sep Nov »
 1
2345678
9101112131415
16171819202122
23242526272829
3031