Using Akka In A Streaming Solution

Artem Rukavytsia shows us how you can easily integrate Akka into a solution with Kafka and Spark Streaming:

Akka gives you the opportunity to make logic for producing/consuming messages from Kafka with the Actor model. It’s very convenient if actors are widely used in your code and it significantly simplifies making data pipelines with actors. For example, you have your Akka Cluster, one part of which allows you to crawl of web pages and the other part of which makes it possible to index and send indexed data to Kafka. The consumer can aggregate this logic. Producing data to Kafka looks as follows:

The Actor model, which Akka implements, is something I kind of understand, but have never spent much time trying to implement.  I can see how it’d make perfect sense communicating with Kafka, though, given the scale and independence of consumers within a consumer group that Kafka provides.

Related Posts

Bayesian Modeling Of Hardware Failure Rates

Sean Owen shows how you can use Bayesian statistical approaches with Spark Streaming, using the example of hard drive failure rates: This data doesn’t arrive all at once, in reality. It arrives in a stream, and so it’s natural to run these kind of queries continuously. This is simple with Apache Spark’s Structured Streaming, and proceeds […]

Read More

Working With Skewed Data In Pig

Dmitry Tolpeko explains how you can use the Weighted Range Partitioner in Apache Pig to work with highly skewed data: The problem is that there are 3,000 map tasks are launched to read the daily data and there are 250 distinct event types, so the mappers will produce 3,000 * 250 = 750,000 files per day. That’s […]

Read More


October 2017
« Sep Nov »