Recognizing Wood Knot Images

Bob Horton and Vanja Paunic walk through a lumber grading scenario with Microsoft R Server:

Here we use the rxFeaturize function from Microsoft R Server, which allows us to perform a number of transformations on the knot images in order to produce numerical features. We first resize the images to fit the dimensions required by the pre-trained deep neural model we will use, then extract the pixels to form a numerical data set, then run that data set through a DNN pre-trained model. The result of the image featurization is a numeric vector (“feature vector”) that represents key characteristics of that image.

Image featurization here is accomplished by using a deep neural network (DNN) model that has already been pre-trained by using millions of images. Currently, MRS supports four types of DNNs – three ResNet models (18, 50, 101)[1] and AlexNet [8].

This is a practical example of how to use image recognition to facilitate machine learning.

Related Posts

Improving Plots With ggformula

Sebastian Sauer shows how you can use the ggformula package combined with ggplot2 to enhance your R visuals: Since some time, there’s a wrapper for ggplot2 available, bundled in the package ggformula. One nice thing is that in that it plays nicely with the popular R package mosaic. mosaic provides some useful functions for modeling along with a tamed and consistent […]

Read More

Using Convolutional Neural Networks To Recognize Features In Images

Michael Grogan shows how you can use Keras to perform image recognition with a convolutional neural network: VGG16 is a built-in neural network in Keras that is pre-trained for image recognition. Technically, it is possible to gather training and test data independently to build the classifier. However, this would necessitate at least 1,000 images, with […]

Read More

Categories

September 2017
MTWTFSS
« Aug Oct »
 123
45678910
11121314151617
18192021222324
252627282930