Recognizing Wood Knot Images

Bob Horton and Vanja Paunic walk through a lumber grading scenario with Microsoft R Server:

Here we use the rxFeaturize function from Microsoft R Server, which allows us to perform a number of transformations on the knot images in order to produce numerical features. We first resize the images to fit the dimensions required by the pre-trained deep neural model we will use, then extract the pixels to form a numerical data set, then run that data set through a DNN pre-trained model. The result of the image featurization is a numeric vector (“feature vector”) that represents key characteristics of that image.

Image featurization here is accomplished by using a deep neural network (DNN) model that has already been pre-trained by using millions of images. Currently, MRS supports four types of DNNs – three ResNet models (18, 50, 101)[1] and AlexNet [8].

This is a practical example of how to use image recognition to facilitate machine learning.

Related Posts

Anomaly Detection With Python

Robert Sheldon continues his SQL Server Machine Learning Series: As important as these concepts are to working Python and MLS, the purpose in covering them was meant only to provide you with a foundation for doing what’s really important in MLS, that is, using Python (or the R language) to analyze data and present the […]

Read More

The Theory Behind cdata

John Mount has a video explaining the concepts behind cdata: We also have two really nifty articles on the theory and methods: Fluid data reshaping with cdata Coordinatized Data: A Fluid Data Specification Please give it a try! Click through for the video, which I found very helpful in tying together a number of data […]

Read More

Categories

September 2017
MTWTFSS
« Aug Oct »
 123
45678910
11121314151617
18192021222324
252627282930