Recognizing Wood Knot Images

Bob Horton and Vanja Paunic walk through a lumber grading scenario with Microsoft R Server:

Here we use the rxFeaturize function from Microsoft R Server, which allows us to perform a number of transformations on the knot images in order to produce numerical features. We first resize the images to fit the dimensions required by the pre-trained deep neural model we will use, then extract the pixels to form a numerical data set, then run that data set through a DNN pre-trained model. The result of the image featurization is a numeric vector (“feature vector”) that represents key characteristics of that image.

Image featurization here is accomplished by using a deep neural network (DNN) model that has already been pre-trained by using millions of images. Currently, MRS supports four types of DNNs – three ResNet models (18, 50, 101)[1] and AlexNet [8].

This is a practical example of how to use image recognition to facilitate machine learning.

Related Posts

Reinforcement Learning with R

Holger von Jouanne-Diedrich takes us through concepts in reinforcement learning: At the core this can be stated as the problem a gambler has who wants to play a one-armed bandit: if there are several machines with different winning probabilities (a so-called multi-armed bandit problem) the question the gambler faces is: which machine to play? He could “exploit” one […]

Read More

A Quick Keras Example

Shubham Dangare takes us through a quick example using Keras and TensorFlow in Python: Keras is a high-level neural networks API, written in Python and capable of running on top of Tensorflow, CNTK  or Theano. It was developed with a focus on enabling fast experimentation. In this blog, we are going to cover one small […]

Read More


September 2017
« Aug Oct »