Classifying Time Series Data With TensorFlow

Burak Himmetoglu applies a time series data set to two different types of neural networks using TensorFlow:

In this blog post, I will discuss the use of deep leaning methods to classify time-series data, without the need to manually engineer features. The example I will consider is the classic Human Activity Recognition (HAR) dataset from the UCI repository. The dataset contains the raw time-series data, as well as a pre-processed one with 561 engineered features. I will compare the performance of typical machine learning algorithms which use engineered features with two deep learning methods (convolutional and recurrent neural networks) and show that deep learning can surpass the performance of the former.

I have used Tensorflow for the implementation and training of the models discussed in this post.  In the discussion below, code snippets are provided to explain the implementation. For the complete code, please see my Github repository.

Click through for the samples, or check out the repo, linked above.

Related Posts

A Quick Keras Example

Shubham Dangare takes us through a quick example using Keras and TensorFlow in Python: Keras is a high-level neural networks API, written in Python and capable of running on top of Tensorflow, CNTK  or Theano. It was developed with a focus on enabling fast experimentation. In this blog, we are going to cover one small […]

Read More

ML Services and Injectable Code

Grant Fritchey looks at sp_execute_external_script for potential SQL injection vulnerabilities: The sharp eyed will see that the data set is defined by SQL. So, does that suffer from injection attacks? Short answer is no. If there was more than one result set within the Python code, it’s going to error out. So you’re protected there. […]

Read More


August 2017
« Jul Sep »