Classifying Time Series Data With TensorFlow

Burak Himmetoglu applies a time series data set to two different types of neural networks using TensorFlow:

In this blog post, I will discuss the use of deep leaning methods to classify time-series data, without the need to manually engineer features. The example I will consider is the classic Human Activity Recognition (HAR) dataset from the UCI repository. The dataset contains the raw time-series data, as well as a pre-processed one with 561 engineered features. I will compare the performance of typical machine learning algorithms which use engineered features with two deep learning methods (convolutional and recurrent neural networks) and show that deep learning can surpass the performance of the former.

I have used Tensorflow for the implementation and training of the models discussed in this post.  In the discussion below, code snippets are provided to explain the implementation. For the complete code, please see my Github repository.

Click through for the samples, or check out the repo, linked above.

Related Posts

Combining Keras With Apache MXNet

Lai Wei, et al, show how to build a neural network in Keras 2 using MXNet as the engine: Distributed training with Keras 2 and MXNet This article shows how to install Keras-MXNet and demonstrates how to train a CNN and an RNN. If you tried distributed training with other deep learning engines before, you […]

Read More

Tuning xgboost Models In R

Gabriel Vasconcelos has a new series on tuning xgboost models: My favourite Boosting package is the xgboost, which will be used in all examples below. Before going to the data let’s talk about some of the parameters I believe to be the most important. These parameters mostly are used to control how much the model […]

Read More


August 2017
« Jul Sep »