Classifying Time Series Data With TensorFlow

Burak Himmetoglu applies a time series data set to two different types of neural networks using TensorFlow:

In this blog post, I will discuss the use of deep leaning methods to classify time-series data, without the need to manually engineer features. The example I will consider is the classic Human Activity Recognition (HAR) dataset from the UCI repository. The dataset contains the raw time-series data, as well as a pre-processed one with 561 engineered features. I will compare the performance of typical machine learning algorithms which use engineered features with two deep learning methods (convolutional and recurrent neural networks) and show that deep learning can surpass the performance of the former.

I have used Tensorflow for the implementation and training of the models discussed in this post.  In the discussion below, code snippets are provided to explain the implementation. For the complete code, please see my Github repository.

Click through for the samples, or check out the repo, linked above.

Related Posts

P-Hacking and Multiple Comparison Bias

Patrick David has a great article on hypothesis testing, p-hacking, and multiple comparison bias: The most important part of hypothesis testing is being clear what question we are trying to answer. In our case we are asking:“Could the most extreme value happen by chance?”The most extreme value we define as the greatest absolute AMVR deviation from […]

Read More

An Explanation Of Convolutional Neural Networks

Shirin Glander explains some of the mechanics behind Convolutional Neural Networks: Convolutional Neural Nets are usually abbreviated either CNNs or ConvNets. They are a specific type of neural network that has very particular differences compared to MLPs. Basically, you can think of CNNs as working similarly to the receptive fields of photoreceptors in the human eye. Receptive fields in our […]

Read More

Categories

August 2017
MTWTFSS
« Jul Sep »
 123456
78910111213
14151617181920
21222324252627
28293031