Random Forests In R

Anish Sing Walia explains the basics of random forests and provides sample code in R:

Random Forests are similar to a famous Ensemble technique called Bagging but have a different tweak in it. In Random Forests the idea is to decorrelate the several trees which are generated on the different bootstrapped samples from training Data.And then we simply reduce the Variance in the Trees by averaging them.
Averaging the Trees helps us to reduce the variance and also improve the Perfomance of Decision Trees on Test Set and eventually avoid Overfitting.

The idea is to build lots of Trees in such a way to make the Correlation between the Trees smaller.

Random forests frequently give a good answer to classification problems, enough so as to make them a nice starting point.

Related Posts

Microsoft R Open 3.5.1

David Smith announces Microsoft R Open 3.5.1: Microsoft R Open 3.5.1 has been released, combining the latest R language engine with multi-processor performance and tools for managing R packages reproducibly. You can download Microsoft R Open 3.5.1 for Windows, Mac and Linux from MRAN now. Microsoft R Open is 100% compatible with all R scripts and packages, and works with […]

Read More

Performing Linear Regression With Power BI

Jason Cantrell shows how to create a simple linear regression in Power BI: Linear Regression is a very useful statistical tool that helps us understand the relationship between variables and the effects they have on each other. It can be used across many industries in a variety of ways – from spurring value to gaining […]

Read More

Categories

July 2017
MTWTFSS
« Jun Aug »
 12
3456789
10111213141516
17181920212223
24252627282930
31