Better Grouping With dplyr

Kevin Feasel

2017-07-13

R

John Mount builds a function to improve upon the group-by to mutate model in dplyr:

The advantages of the shorthand are:

  • The analyst only has to specify the grouping column once.
  • The data (mtcars) enters the pipeline only once.
  • The analyst doesn’t have to start thinking about joins immediately.

Frankly I’ve never liked the shorthand. I feel it is a “magic extra” that a new user would have no way of anticipating from common use of group_by() and summarize(). I very much like the idea of wrapping this important common use case into a single verb. Adjoining “windowed” or group-calculated columns is a common and important step in analysis, and well worth having its own verb.

Below is our attempt at elevating this pattern into a packaged verb.

Click through for the script.  I’d like to see something like this make its way into dplyr.

Related Posts

Microsoft R Open 3.5.1

David Smith announces Microsoft R Open 3.5.1: Microsoft R Open 3.5.1 has been released, combining the latest R language engine with multi-processor performance and tools for managing R packages reproducibly. You can download Microsoft R Open 3.5.1 for Windows, Mac and Linux from MRAN now. Microsoft R Open is 100% compatible with all R scripts and packages, and works with […]

Read More

Performing Linear Regression With Power BI

Jason Cantrell shows how to create a simple linear regression in Power BI: Linear Regression is a very useful statistical tool that helps us understand the relationship between variables and the effects they have on each other. It can be used across many industries in a variety of ways – from spurring value to gaining […]

Read More

Categories

July 2017
MTWTFSS
« Jun Aug »
 12
3456789
10111213141516
17181920212223
24252627282930
31