Data Cleaning Tips

Kevin Feasel

2017-07-12

R

Michael Grogan has a few tips for data cleaning with R:

6. Delete observations using head and tail functions

The head and tail functions can be used if we wish to delete certain observations from a variable, e.g. Sales. The head function allows us to delete the first 30 rows, while the tail function allows us to delete the last 30 rows.

When it comes to using a variable edited in this way for calculation purposes, e.g. a regression, the as.matrix function is also used to convert the variable into matrix format:

Salesminus30days←head(Sales,-30)
X1=as.matrix(Salesminus30days)
X1

Salesplus30days<-tail(Sales,-30)
X2=as.matrix(Salesplus30days)
X2

Some of these tips are for people familiar with Excel but fairly new to R.  These also use the base library rather than the tidyverse packages (e.g., using merge instead of dplyr’s join or as.date instead of lubridate).  You may consider that a small negative, but if it is, it’s a very small one.

Related Posts

The Lesser-Known Apply Functions In R

Andrew Treadway covers a few of the lesser-known apply functions in R: rapply Let’s start with rapply. This function has a couple of different purposes. One is to recursively apply a function to a list. We’ll get to that in a moment. The other use of rapply is to a apply a function to only those elements in […]

Read More

Controlling Azure Services In R With AzureR

Hong Ooi announces a new set of packages called AzureR: As background, some of you may remember the AzureSMR package, which was written a few years back as an R interface to Azure. AzureSMR was very successful and gained a significant number of users, but it was never meant to be maintainable in the long term. As […]

Read More

Categories

July 2017
MTWTFSS
« Jun Aug »
 12
3456789
10111213141516
17181920212223
24252627282930
31