Spark Streaming Vs Kafka Streams

Mahesh Chand Kandpal contrasts Kafka Streams with Spark Streaming:

The low latency and an easy-to-use event time support also apply to Kafka Streams. It is a rather focused library, and it’s very well-suited for certain types of tasks. That’s also why some of its design can be so optimized for how Kafka works. You don’t need to set up any kind of special Kafka Streams cluster, and there is no cluster manager. And if you need to do a simple Kafka topic-to-topic transformation, count elements by key, enrich a stream with data from another topic, or run an aggregation or only real-time processing — Kafka Streams is for you.

If event time is not relevant and latencies in the seconds range are acceptable, Spark is the first choice. It is stable and almost any type of system can be easily integrated. In addition it comes with every Hadoop distribution. Furthermore, the code used for batch applications can also be used for the streaming applications as the API is the same.

Read on for more analysis.

Related Posts

Long-Term Storage In Kafka

Jay Kreps shows us that you can use Kafka as a primary data store: The short answer is that it’s not insane, people do this all the time, and Kafka was actually designed for this type of usage. But first, why might you want to do this? There are actually a number of use cases, […]

Read More

Creating A Simple Kafka Streams Application

Bill Bejeck has built a simple Kafka Streams application for us: This blog post will quickly get you off the ground and show you how Kafka Streams works. We’re going to make a toy application that takes incoming messages and upper-cases the text of those messages, effectively yelling at anyone who reads the message. This […]

Read More

Categories

June 2017
MTWTFSS
« May Jul »
 1234
567891011
12131415161718
19202122232425
2627282930