Spark Streaming Vs Kafka Streams

Mahesh Chand Kandpal contrasts Kafka Streams with Spark Streaming:

The low latency and an easy-to-use event time support also apply to Kafka Streams. It is a rather focused library, and it’s very well-suited for certain types of tasks. That’s also why some of its design can be so optimized for how Kafka works. You don’t need to set up any kind of special Kafka Streams cluster, and there is no cluster manager. And if you need to do a simple Kafka topic-to-topic transformation, count elements by key, enrich a stream with data from another topic, or run an aggregation or only real-time processing — Kafka Streams is for you.

If event time is not relevant and latencies in the seconds range are acceptable, Spark is the first choice. It is stable and almost any type of system can be easily integrated. In addition it comes with every Hadoop distribution. Furthermore, the code used for batch applications can also be used for the streaming applications as the API is the same.

Read on for more analysis.

Related Posts

Leveraging Hive In Pyspark

Fisseha Berhane shows how to use Spark to connect Python to Hive: If we are using earlier Spark versions, we have to use HiveContext which is variant of Spark SQL that integrates with data stored in Hive. Even when we do not have an existing Hive deployment, we can still enable Hive support. In this […]

Read More

Stream Reactor Update

Andrew Stevenson announces Stream Reactor 1.0.0 for Kafka Connect 1.0: Stream Reactor is an Apache License, Version 2.0 open source collection of components built on top of Kafka and provides Kafka Connect compatible connectors to move data between Kafka and popular data stores. Stream Reactor provides source connectors to publish data into Kafka and sink connectorsto bring data from Kafka […]

Read More

Categories

June 2017
MTWTFSS
« May Jul »
 1234
567891011
12131415161718
19202122232425
2627282930