Fraud Detection With Python

Kevin Jacobs has a walkthrough of how to use Pandas and scikit-learn to perform fraud detection against a sample set of credit card transactions:

Apparently, the data consists of 28 variables (V1, …, V28), an “Amount” field a “Class” field and the “Time” field. We do not know the exact meanings of the variables (due to privacy concerns). The Class field takes values 0 (when the transaction is not fraudulent) and value 1 (when a transaction is fraudulent). The data is unbalanced: the number of non-fraudulent transactions (where Class equals 0) is way more than the number of fraudulent transactions (where Class equals 1). Furthermore, there is a Time field. Further inspection shows that these are integers, starting from 0.

There is a small trick for getting more information than only the raw records. We can use the following code:

print(df.describe())

This code will give a statistically summary of all the columns. It shows for example that the Amount field ranges between 0.00 and 25691.16. Thus, there are no negative transactions in the data.

The Kaggle competition data set is available, so you can follow along.

Related Posts

Linear Programming in Python

Francisco Alvarez shows us an example of linear programming in Python: The first two constraints, x1 ≥ 0 and x2 ≥ 0 are called nonnegativity constraints. The other constraints are then called the main constraints. The function to be maximized (or minimized) is called the objective function. Here, the objective function is x1 + x2. Two classes of […]

Read More

From pandas to Spark with koalas

Achilleus tries out Koalas: Python is widely used programming language when it comes to Data science workloads and Python has way too many different libraries to back this fact. Most of the data scientists are familiar with Python and pandas mostly. But the main issue with Pandas is it works great for small and medium […]

Read More

Categories

June 2017
MTWTFSS
« May Jul »
 1234
567891011
12131415161718
19202122232425
2627282930