Forcing 0 Intercept Inflates R-squared In R

John Mount has an informative post on how you can trick yourself when running linear regression models in R and forcing the y intercept to be 0:

So far so good. Let’s now remove the “intercept term” by adding the “0+” from the fitting command.

m2 <- lm(y~0+x, data=d)t(broom::glance(m2))
## [,1]
## r.squared 7.524811e-01
## adj.r.squared 7.474297e-01
## sigma 3.028515e-01
## statistic 1.489647e+02
## p.value 1.935559e-30
## df 2.000000e+00
## logLik -2.143244e+01
## AIC 4.886488e+01
## BIC 5.668039e+01
## deviance 8.988464e+00
## df.residual 9.800000e+01
d$pred2 <- predict(m2, newdata = d)

Uh oh. That appeared to vastly improve the reported R-squared and the significance (“p.value“)!

Read on to learn why this happens and how you can prevent this from tricking you in the future.

Related Posts

Interactive ggplot Plots with plotly

Laura Ellis takes us through ggplotly: As someone very interested in storytelling, ggplot2 is easily my data visualization tool of choice. It is like the Swiss army knife for data visualization. One of my favorite features is the ability to pack a graph chock-full of dimensions. This ability is incredibly handy during the data exploration […]

Read More

Goodbye, gather and spread; Hello pivot_long and pivot_wide

John Mount covers a change in tidyr which mimics Mount and Nina Zumel’s pivot_to_rowrecs and unpivot_to_blocks functions in the cdata package: If you want to work in the above way we suggest giving our cdatapackage a try. We named the functions pivot_to_rowrecs and unpivot_to_blocks. The idea was: by emphasizing the record structure one might eventually internalize what the transforms […]

Read More


June 2017
« May Jul »