Quantile Regression With Python

Gopi Subramanian discusses one of my favorite regression concepts, heteroskedasticity:

With variance score of 0.43 linear regression did not do a good job overall. When the x values are close to 0, linear regression is giving a good estimate of y, but we near end of x values the predicted y is far way from the actual values and hence becomes completely meaningless.

Here is where Quantile Regression comes to rescue. I have used the python package statsmodels 0.8.0 for Quantile Regression.

Let us begin with finding the regression coefficients for the conditioned median, 0.5 quantile.

The article doesn’t render the code very well at all, but Gopi does have the example code on Github, so you can follow along that way.

Related Posts

Online Learning Algorithms

Xin Hunt describes the benefits of online learning algorithms: A few examples of classical online learning algorithms include recursive least squares, stochastic gradient descent and multi-armed bandit algorithms like Thompson sampling. Many online algorithms (including recursive least squares and stochastic gradient descent) have offline versions. These online algorithms are usually developed after the offline version, […]

Read More

Installing The Azure ML Workbench

Leila Etaati walks us through setting up the Azure ML workbench: In Microsoft ignite 2017, Azure ML team announce new on-premises tools for doing machine learning. this tools much more comprehensive as it provides 1- a workspace helps data wrangling 2- Data Visualization 3-Easy to deploy 4-Support Python codes in this post and next posts, I […]

Read More

Categories

June 2017
MTWTFSS
« May Jul »
 1234
567891011
12131415161718
19202122232425
2627282930