Quantile Regression With Python

Gopi Subramanian discusses one of my favorite regression concepts, heteroskedasticity:

With variance score of 0.43 linear regression did not do a good job overall. When the x values are close to 0, linear regression is giving a good estimate of y, but we near end of x values the predicted y is far way from the actual values and hence becomes completely meaningless.

Here is where Quantile Regression comes to rescue. I have used the python package statsmodels 0.8.0 for Quantile Regression.

Let us begin with finding the regression coefficients for the conditioned median, 0.5 quantile.

The article doesn’t render the code very well at all, but Gopi does have the example code on Github, so you can follow along that way.

Related Posts

Leveraging Hive In Pyspark

Fisseha Berhane shows how to use Spark to connect Python to Hive: If we are using earlier Spark versions, we have to use HiveContext which is variant of Spark SQL that integrates with data stored in Hive. Even when we do not have an existing Hive deployment, we can still enable Hive support. In this […]

Read More

Markov Chains In Python

Sandipan Dey shows off various uses of Markov chains as well as how to create one in Python: Perspective. In the 1948 landmark paper A Mathematical Theory of Communication, Claude Shannon founded the field of information theory and revolutionized the telecommunications industry, laying the groundwork for today’s Information Age. In this paper, Shannon proposed using a Markov chain to […]

Read More

Categories

June 2017
MTWTFSS
« May Jul »
 1234
567891011
12131415161718
19202122232425
2627282930