Quantile Regression With Python

Gopi Subramanian discusses one of my favorite regression concepts, heteroskedasticity:

With variance score of 0.43 linear regression did not do a good job overall. When the x values are close to 0, linear regression is giving a good estimate of y, but we near end of x values the predicted y is far way from the actual values and hence becomes completely meaningless.

Here is where Quantile Regression comes to rescue. I have used the python package statsmodels 0.8.0 for Quantile Regression.

Let us begin with finding the regression coefficients for the conditioned median, 0.5 quantile.

The article doesn’t render the code very well at all, but Gopi does have the example code on Github, so you can follow along that way.

Related Posts

P-Hacking and Multiple Comparison Bias

Patrick David has a great article on hypothesis testing, p-hacking, and multiple comparison bias: The most important part of hypothesis testing is being clear what question we are trying to answer. In our case we are asking:“Could the most extreme value happen by chance?”The most extreme value we define as the greatest absolute AMVR deviation from […]

Read More

Feature And Text Classification Using Naive Bayes In R

I wrap up my series on the Naive Bayes class of algorithms, finally writing some code along the way: Now we’re going to look at movie reviews and predict whether a movie review is a positive or a negative review based on its words. If you want to play along at home, grab the data set, […]

Read More


June 2017
« May Jul »