Quantile Regression With Python

Gopi Subramanian discusses one of my favorite regression concepts, heteroskedasticity:

With variance score of 0.43 linear regression did not do a good job overall. When the x values are close to 0, linear regression is giving a good estimate of y, but we near end of x values the predicted y is far way from the actual values and hence becomes completely meaningless.

Here is where Quantile Regression comes to rescue. I have used the python package statsmodels 0.8.0 for Quantile Regression.

Let us begin with finding the regression coefficients for the conditioned median, 0.5 quantile.

The article doesn’t render the code very well at all, but Gopi does have the example code on Github, so you can follow along that way.

Related Posts

Exploratory Data Analysis with inspectdf

Laura Ellis continues a dive into Exploratory Data Analysis, this time using the inspectdf package: I like this package because it’s got a lot of functionality and it’s incredibly straightforward to use. In short, it allows you to understand and visualize column types, sizes, values, value imbalance & distributions as well as correlations. Better yet, […]

Read More

Non-Linear Classifiers with Support Vector Machines

Rahul Khanna continues a series on support vector machines: In this blog post, we will look at a detailed explanation of how to use SVM for complex decision boundaries and build Non-Linear Classifiers using SVM. The primary method for doing this is by using Kernels. In linear SVM we find margin maximizing hyperplane with features […]

Read More

Categories

June 2017
MTWTFSS
« May Jul »
 1234
567891011
12131415161718
19202122232425
2627282930