Microsoft ML For Park

Xiaoyong Zhu announces that the Microsoft Machine Learning library is now available for Spark:

We’ve learned a lot by working with customers using SparkML, both internal and external to Microsoft. Customers have found Spark to be a powerful platform for building scalable ML models. However, they struggle with low-level APIs, for example to index strings, assemble feature vectors and coerce data into a layout expected by machine learning algorithms. Microsoft Machine Learning for Apache Spark (MMLSpark) simplifies many of these common tasks for building models in PySpark, making you more productive and letting you focus on the data science.

The library provides simplified consistent APIs for handling different types of data such as text or categoricals. Consider, for example, a DataFrame that contains strings and numeric values from the Adult Census Income dataset, where “income” is the prediction target.

It’s an open source project as well, so that barrier to entry is lowered significantly.

Related Posts

Data Wrangling At Scale

John Mount has a short article showing off the cdata package: Suppose we needed to un-pivot this data into a row oriented representation. Often big data transform steps can achieve a much higher degree of parallelization with “tall data”. With the cdata package this transform is easy and performant, as we show below. Read the whole thing.

Read More

What Happens In Deep Neural Networks?

Adrian Colyer has a two-parter summarizing an interesting academic paper regarding deep neural networks.  Part one introduces the theory: Section 2.4 contains a discussion on the crucial role of noise in making the analysis useful (which sounds kind of odd on first reading!). I don’t fully understand this part, but here’s the gist: The learning […]

Read More

Categories

June 2017
MTWTFSS
« May Jul »
 1234
567891011
12131415161718
19202122232425
2627282930