Microsoft ML For Park

Xiaoyong Zhu announces that the Microsoft Machine Learning library is now available for Spark:

We’ve learned a lot by working with customers using SparkML, both internal and external to Microsoft. Customers have found Spark to be a powerful platform for building scalable ML models. However, they struggle with low-level APIs, for example to index strings, assemble feature vectors and coerce data into a layout expected by machine learning algorithms. Microsoft Machine Learning for Apache Spark (MMLSpark) simplifies many of these common tasks for building models in PySpark, making you more productive and letting you focus on the data science.

The library provides simplified consistent APIs for handling different types of data such as text or categoricals. Consider, for example, a DataFrame that contains strings and numeric values from the Adult Census Income dataset, where “income” is the prediction target.

It’s an open source project as well, so that barrier to entry is lowered significantly.

Related Posts

Building TensorFlow Neural Networks On Spark With Keras

Jules Damji has an example of using the PyCharm IDE to use Keras to build TensorFlow neural network models on the Databricks MLflow library: Our example in the video is a simple Keras network, modified from Keras Model Examples, that creates a simple multi-layer binary classification model with a couple of hidden and dropout layers and […]

Read More

When Image Classifiers Look At Unknown Objects

Pete Warden explains that image classifiers aren’t magic: As people, we’re used to being able to classify anything we see in the world around us, and we naturally expect machines to have the same ability. Most models are only trained to recognize a very limited set of objects though, such as the 1,000 categories of the […]

Read More


June 2017
« May Jul »