Riddler Nation: Game Theory In Action

Curtis Miller goes over a multi-phase distribution game with no known information:

The winning strategy of the last round, submitted by Vince Vatter, was (0, 1, 2, 16, 21, 3, 2, 1, 32, 22), with an official record1 of 751 wins, 175 losses, and 5 ties. Naturally, the top-performing strategies look similar. This should not be surprising; winning strategies exploit common vulnerabilities among submissions.

I’ve downloaded the submitted strategies for the second round (I already have the first round’s strategies). Lets load them in and start analyzing them.

This is a great blog post, which looks at using evolutionary algorithms to evolve a winning strategy.

Related Posts

Building An Image Recognizer With R

David Smith has a post showing how to build an image recognizer with R and Microsoft’s Cognitive Services Library: The process of training an image recognition system requires LOTS of images — millions and millions of them. The process involves feeding those images into a deep neural network, and during that process the network generates […]

Read More

Understanding Decision Trees

Ramandeep Kaur explains how decision trees work: Simply put, a decision tree is a tree in which each branch node represents a choice between a number of alternatives, and each leaf node represents a decision. It is a type of supervised learning algorithm (having a pre-defined target variable) that is mostly used in classification problems and […]

Read More

Categories

June 2017
MTWTFSS
« May Jul »
 1234
567891011
12131415161718
19202122232425
2627282930