Spark Changes In HDP 2.6

Vinay Shukla and Syed Mahmood talk about what’s new with Spark and Zeppelin in the Hortonworks Data¬†Platform 2.6 update:


Most data scientists use R & Python and with SparkR & PySpark respectively they can continue to leverage their familiarity with the R & Python languages. However, they need to use the Spark API to leverage Machine learning with Spark and to take advantage of distributed computations. Both SparkR & PySpark are evolving rapidly and SparkR now supports a number of machine learning algorithms such as LDA, ALS, RF, GMM GBT etc. Another key improvement in SparkR is the ability to deploy a package interactively. This will help Data Scientists deploy their favorite R package in their own environment without stepping on other users.

PySpark now also supports deploying VirtualEnv and this will allow PySpark users to deploy their libraries in their own individual deployments.

There are several large changes, so check it out.

Related Posts

Kafka Partitioning Strategies

Amy Boyle shares some thoughts on Kafka partitioning strategy: If you have enough load that you need more than a single instance of your application, you need to partition your data. The producer clients decide which topic partition data ends up in, but it’s what the consumer applications will do with that data that drives […]

Read More

Single-Node Hadoop 3 Installation

Mark Litwintschik has a fairly simple guide for installing Hadoop 3 on a single node for testing: This post is meant to help people explore Hadoop 3 without feeling the need they should be using 50+ machines to do so. I’ll be using a fresh installation of Ubuntu 16.04.2 LTS on a single computer. The […]

Read More