Our ad server publishes billions of messages per day to Kafka. We soon realized that writing a proprietary Kafka consumer able to handle that amount of data with the desired offset management logic would be non-trivial, especially when requiring exactly-once-delivery semantics. We found that the Kafka Connect API paired with the HDFS connector developed by Confluent would be perfect for our use case.
We’ve also found it painful not having a central authority on data structures that can share their respective schemas across all services and applications. Without a central registry for message schemas, data serialization and deserialization for a variety of applications are troublesome and the pipeline is fragile when schema evolution happens. We found Schema Registry is a great solution for this problem.
To address the above two problems, we integrated the Kafka Connect API and Schema Registry into our Kafka-centered data pipeline.
Well worth reading, especially the difficulties that they’ve had during maintenance periods and in lower environments.